本教程从安装镜像文件、Linux指令开始教你如何Jetson Nano,也是使用其他Jetson其他平台(ARM架构)的初级教程,让你快速掌握Jetson的使用方法和自主机器产品开发方法,非常合适人工智能、机器人、计算机领域的人学习。
- 第1章 AI on the Jetson Nano Lesson
- 1-1 Getting Started for Absolute Beginners ( 01:25:02)
- 1-2 Learning the Linux Terminal and Command Line ( 52:58)
- 1-3 More Linux Commands ( 54:56)
- 1-4 Operating the Jeston Nano Headless ( 17:47)
- 1-5 Introduction to Python ( 01:16:39)
- 1-6 Python Code Example ( 29:09)
- 1-7 More Python Example Practice ( 42:09)
- 1-8 Installing a Good Python IDE Environment ( 29:29)
- 1-9 Installing and Using Matplotlib Pyplot and Numpy ( 59:04)
- 1-10 Installing OpenCV for Python 3 ( 14:26)
- 1-11 Running the Raspberry Pi Camera in OpenCV ( 43:21)
- 1-12 Moving Video Windows in OpenCV ( 25:53)
- 1-13 Resizing Images in OpenCV ( 23:53)
- 1-14 Reading and Writing Video Files in OpenCV ( 26:07)
- 1-15 Drawing Shapes on Video in OpenCV ( 28:12)
- 1-16 Draw a Bouncing Box on Video in OpenCV ( 28:55)
- 1-17 Detecting and Processing Mouse Click Events in OpenCV ( 01:03:26)
- 1-18 Creating and Using Trackbars in OpenCV ( 19:51)
- 1-19 Draw Rectangles Using Trackbars in OpenCV ( 16:20)
- 1-20 Understanding Region of Interest (ROI) in OpenCV ( 27:32)
- 1-21 Working With Region of Interest (ROI) in OpenCV ( 29:03)
- 1-22 Creating ROI (Region of Interest) in OpenCV With Mouse Clicks ( 24:27)
- 1-23 Bitwise and Logical Operations in OpenCV ( 34:07)
- 1-24 Understanding Thresholding and Masks in OpenCV ( 01:03:53)
- 1-25 Understanding and Moving Watermarks in OpenCV ( 37:34)
- 1-26 Understanding Color Channels in OpenCV ( 56:39)
- 1-27 Tracking Objects in OpenCV Using HSV Color Space ( 01:14:39)
- 1-28 Tracking Objects in OpenCV Using Contours ( 59:13)
- 1-29 Gear to Create a Pan Tilt Camera Platform for Tracking ( 15:11)
- 1-30 Building a Servo Pan Tilt Camera Controller ( 29:24)
- 1-31 Controlling Servos for Using PCA9685 ( 56:22)
- 1-32 Tracking an object with Servos in OpenCV ( 58:33)
- 1-33 Introduction to Face Detection with OpenCV ( 29:06)
- 1-34 Face and Eye Detection with Haar Casccades in OpenCV ( 36:13)
- 1-35 Tracking Faces in OpenCV with pan tilt Camera ( 53:01)
- 1-36 Updating to NVIDIA Jetpack 4.3 ( 25:37)
- 1-37 Installing code-oss on NVIDIA Jetpack 4.3 ( 42:42)
- 1-38 Installing Facial Recognition Library for OpenCV ( 24:48)
- 1-39 Face Recognition and Identification with OpenCV ( 01:04:05)
- 1-40 Training Facial Recognition Models in OpenCV ( 01:03:34)
- 1-41 Saving Training Data for Facial Recognition in OpenCV ( 25:01)
- 1-42 Recognizing and Identifying Faces from Live Video on OpenCV ( 46:35)
- 1-43 Instrumenting Code to Measure FPS in OpenCV ( 35:54)
- 1-44 Running Two Cameras in OpenCV ( 29:06)
- 1-45 Understanding Python Functions Classes Methods and Threading ( 01:11:30)
- 1-46 Synchronizing Multiple Cameras in OpenCV ( 50:10)
- 1-47 Facial Recognition on Multiple Multiple Cameras in OpenCV ( 01:04:57)
- 1-48 Intellisense and AutoComplete for OpenCV and Visual Studio ( 11:34)
- 1-49 Installing NVIDIA Object Detection and Inference tools ( 48:51)
- 1-50 Introduction to Deep Learning and Deep Neural Networks ( 01:21:22)
- 1-51 Improving NVIDIA Jetson Inference Library for RPi Camera ( 29:17)
- 1-52 Improving the Picture Quality of the Raspberry Pi Camera ( 49:13)
- 1-53 Object Detection and Recognition in OpenCV ( 01:01:02)
- 1-54 Recognizing and Locating Objects of Interest in OpenCV ( 24:21)
- 1-55 Training a Deep Neural Network With Transfer Learning ( 54:00)
- 1-56 Using the GPIO Pins on the Jetson Nano ( 46:14)
- 1-57 Push Button Switch on the GPIO Pins With Pull Up Resistors ( 28:26)
- 1-58 Controlling an LED With GPIO Pins and Button Switch ( 40:58)
- 1-59 PWM on the GPIO Pins of the Jetson Nano ( 39:13)
- 1-60 Make Your Nano Talk With Text to Speech ( 26:54)
- 1-61 Add Voice and Speech (TTS) Capability to the Jetson Nano ( 48:09)
- 1-62 Make a Streaming IP Camera from a Raspberry Pi Zero W ( 48:07)
- 讲师简介
- 于 1993 年参与创办了 NVIDIA,拥有 30 余年的行业经验。在公司从一家初创公司成长为视觉计算和并行计算领域的全球领军者期间,Malachowsky 在管理、定义和推动公司核心技术方面发挥了重要作用。作为 NVIDIA 高管,他领导着诸多职能工作,包括 IT、运营和公司产品工程的方方面面。近期,他负责领导 NVIDIA 的先进研究组织,该组织致力于开发具有战略意义的技术,帮助推动公司的未来发展,助力公司取得成功。在加入 NVIDIA 之前,Malachowsky 曾在惠普和 Sun Microsystems 担任工程和技术领导职务。他是集成电路设计和方法学领域的公认权威,已获得了近 40 项专利。他拥有佛罗里达大学的电子工程学士学位和圣克拉拉大学的理学硕士学位。两家高校均为 Malachowsky 颁发了杰出校友奖。